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ADAPTIVELY SOLVING FOR PROD. DIST.ADAPTIVELY SOLVING FOR PROD. DIST.’’SS

      Brouwer updating                          Gradient descent            Importance sampling

       Adaptive Metropolis-Hastings                   Sim. annealing / Prod. Distributions

POTPOURRIPOTPOURRI
 Coordinate transforms                Continuous spaces          Constrained optimization

  Black box optimization             Time-extended systems             Block look-ahead

     Entropy bounds  (un)supervised mach. learning       Observing agents

• A space z Œ z

 z can be anything:
uncountable, symbolic, time-extended, states of human
beings, states of computers,  mixtures of any of these, etc.

• N Spaces {xi Œ xi} :

x Œ x are the joint elements, x(i) is all {xj≠i}

Need a rule z(x) = z  to match any sample x Œ x with a z Œ z :

                                 (Need not be invertible)

xNx2x1
...

z

This is a semi-coordinate system

CENTRAL CONCEPTCENTRAL CONCEPT
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• Any distribution P(x) induces a P(z):

• But we don’t have P(x); we have N distributions qi(xi Œ  xi).

Need a rule {qi(xi)} Æ P(x) to get P(z)

• For simplicity, choose the product distribution rule:

P(x) = ∏ i qi(xi)

† 

P(z) = P(z(x)=z) = dxÚ P(x)d(z(x)-z)

P(z)  =  P(z(x) = z)

q1(x1) ¥ q2(x2) ¥ . . .         . . . ¥ qN(xN)

P(x)

2

Need a rule to set q  ≡  (q1, q2 . . ., qN)

I) Each qi directly optimizes its own criterion.

II) q induces an optimal P(z). E.g.,
  i)  Best approximate a provided P*(z)
  ii) Best approximate a sample of P*(z)

So each optimal qi is the vector minimizing the Lagrangian

Li(qi, q(i))

subject to qi being a probability

•   qi may depend on q(i)   — but xi and x(i) are independent

•   More semi-coordinates allows more accurate approximation

3
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TAKE-HOME MESSAGE:TAKE-HOME MESSAGE:

Whenever you encounter a distribution
P(z) that is difficult to deal with, try

expanding it as a product distribution

∏i qi(xi)

with associated Lagrangians.
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Why optimization (and
therefore control, high-
dimension integration,
etc.) can be hard

•

Core issue: how to use information at one point to
choose a next sample point.

NP hard is when such information is useless.

•

•

Example:  convex
maximization in ¬3

OPTIMIZATIONOPTIMIZATION

  — original problem solution

¥

Example: Interior
point methods

•

Best case is continuous domains, where smoothness
can be exploited  — if you aren’t trapped in a vertex

So: Distort problem so solution is off the border, and
then weaken the distortion.

•

•

¥ — distorted problem solution
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Can do this for discrete domains by using a
probability distribution as the continuous variable

•

P(x1 = a)

P(x1 = b)

P(x1 = c)

P(x1) Œ ¬3

P(x1) = d(x1 - (1, 0, 0))
if x1 = c exactly

•

•

Get the solution off the border

¥

1) For each successive distorted problem, exploit
smoothness to search over P(x)’s

 •  Gradient descent, Newton’s method  . . .  even
     simulated annealing.

2) Example: To minimize G(z), find the P(x) minimizing

L(P)   =  bEP(G(z(x)))  -  S(P)
•   S(P) has infinite derivative at the simplex border
•   Larger b  =   less distortion  —  anneal

Gradient descent to optimize categorical variables
subject to categorical constraints
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EP(G)  =  Údx G(z(x))P(x) is linear in P(x). Therefore,

       If -S(P) is convex, so is L(P)

So L(P) has a unique minimum, off the border

P(x1 = c)
10

EP(G(z(x))

L(P) (high b)

L(P) (low b)

Example: Take S(P) to be the Shannon entropy,

S(P)  =  - Údx P(x) ln[P(x)]

•     As required, -S(P) is convex, with infinite derivative
       at the simplex border

•    L(P) is minimized by the Boltzmann distribution,

P(x) µ exp(-b G(x))
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As b Æ •, P(x) becomes a delta function about the
x minimizing G(x)

P(x) for P
minimizing L
(high b)

P(x) for P
minimizing L
(low b)

x

G(z(x))

Simulated annealing :

    1)  At each b, perform an associated Metropolis-Hastings
   random walk

    2)  That walk eventually gives a random sample of Pb(x)

    3)  When you think it has, increase b, and repeat

So when you get to high b, your sample is likely to be close to
argmin G[(z(x))]

. . .  inefficient
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Alternative: Use gradient descent (for example) to
find P(x) at each b :

P(x1 = c)
10

EP(G(z(x))

L(P) (high b)

L(P) (low b)

P(x) lives in a huge space. How parameterize it?

With a distributed parameterization, parameters can be
estimated separately from each other. So optimization

    i)   can be parallelized,
    ii)  can be used for distributed control,

So . . .

Use a product distribution:   P(x)  = q(x) =  ∏i qi(xi)
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Downside:

• L(q)    =   bEq(G(z(x)))  -  S(q)
          =    Údx G(z(x)) ’iqi(x)   -  S(q)

• L is linear in P  — but multilinear in the qi

•  So even for convex S(q), L(q) need not be convex:

At any b, L(q) can have multiple minima

•  Even for entropic S,

At any b, q(x) can have multiple peaks

  (just like multiple Nash equilibria . . .)

Intuition:
   L convex over ¡+, the simplex of all distributions

   L not convex over ¡, the submanifold through ¡ + of all
   product distributions

¡

Level curves
of L

¡+ :
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Solutions:

   1) If S(q) = ÂiSi(qi), then for fixed q(i), Li(q) = is convex in qi

   2) Anneal b:

   3) Change coordinates:

•

•

•

•
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DISTRIBUTED CONTROLDISTRIBUTED CONTROL
(Multi-agent systems)(Multi-agent systems)

1) The challenge:

i)     z  =  (z1, z2)

ii)   G a function of both zi

iii)  Can only control  z1 . . .

2)  So choose z1 to maximize E(G | z1)  , i.e.,

Údz2 G(z1, z2)P(z2 | z1)

3)  Want each control variable Œ z1 set autonomously

1) “Just” optimization;
Basis of conventional control theory

2) For our desired distributed solution, use a product
distribution approach instead of control theory?

3) Two major problems:

i)  In naive prod. distribution optimization you set all qi

 - here you can’t set q2.

ii) P(z) is explicitly not a product distribution.



13

Solution:
Puppet master moves sticks qi,
which move strings P(z2 | z1),

which move puppet, expected G

Formally,

      1) x = the control variables, z1

         So Eq(G | x)   =   ∫dx q(x) E(G | z1 = x)

        =   ∫dxi q(x) ∫d(z2)G(z1, z2)P(z2 | z1 = x)

        =   ∫dxi ∏i qi(xi) ∫d(z2) G(z1, z2)P(z2 | z1 = x)

       2) Get off the border:    L(q)  =  bEq(G | x)  -  S(q)

z1 Expected G
P(z2 | z1)

Overview:

z1 minimizing Expected G hard to find.
So use a product distribution, and get off the border:

...q1(x1)

P(z1)

q2(x2) qN(xN)

L(q)  =  b(Expected G)  -  S(q)
P(z2 | z1)

Find q(x) minimizing L(q) (easy), and then raise b.
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1) A set of N players, each choosing a pure strategy, zi Œ zi

2) A set of N payoff functions hi(z)

3) z is a Nash equilibrium iff for all players i,

for all z'i, hi(z'i, z(i))  ≤  hi(zi, z(i))

Example: Prisoner’s dilemma
payoff table (h1(z), h2(z)) (2, 2)    (10, 0)

(0, 10)   (7, 7)

NONCOOPERATIVE GAME THEORYNONCOOPERATIVE GAME THEORY

Player 2’s
move:

Player 1’s move
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•  Problem:

Some games have no Nash equilbrium

•  Solution:

i) Players take mixed strategies Pi(zi);

ii) ’iPi(zi) a Nash equilibrium iff for all players i,
    no change to Pi(zi) will increase Údz hi(z) ’i Pi(zi)

. . . gee, a product distribution . . .

•  N ash used Brouwer’s fixed point theorem to prove
always exists a mixed strategy Nash equilibrium

. . . gee, “Brouwer” is the name of a rule for
setting product distributions . . .

•  Unresolved problems:

    1) Finding Nash equilibria is a (hard) multi-criteria
   optimization problem

    2) In real world, never at a Nash equilibrium, due to
        limited computational power, if nothing else.

Bounded rationality

•   Attempts to date to solve (2) are just more elaborate
     models of (human) players

     -  Underlying problem is arbitrariness of the models.
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Alternative:

   1)  For now, take x = z, and define gi(x) ≡ -hi(z(x))

   2) At Nash equilibrium, each qi minimizes

   Li(q)  =   Eqi
(gi | q(i))

             =   Údx gi(x) ’j qj(xj)

    3) Allow broader class of Lagrangians.
        E.g., each qi minimizes

        Li(q)  =   bEqi
(gi | q(i))  -  S(q)

   4) b < • is bounded rationality

1) S(q) can be set from first principles (e.g., using
information theory)

2) S(q) can be set to enforce a particular model of rationality

3) Can also set the model of rationality by replacing the gi

term in Li . E.g.,

-gi(x)   =  hi(z(x))  -  [hi(z(x))]2

penalizes qi for which the r.v.  hi(z(x)) has large variance.

4) Alternativley, replacing gi with

gi(x)   =  Âj fi,j(x)

is equivalent to having player i try to optimize several
payoff functions at once
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1) If S(q) has infinite derivatives at ¡’s border, the optimal q
for b < • is off that border  — and usually easier to find

2) If in addition S(q) = Âi ÚdxiSi(qi(xi)) and Si is bounded
below, minimizing Li(q) is conventional (full rationality)
game theory —  just with a new payoff function,

fi(x, q)   =   bgi (x)   -   Si(qi(xi)) / qi(xi)

So  - Si(qi(xi)) / bqi(xi) is a preference ordering for

(the difficulty of) the computation of qi(xi)

zi

zj

Contract set
for xi = xi

Contract set
for xj = xj

1) If x ≠ z, every xi Œ xi delineates a set of binding contracts
among the players   — a set of z  —  that coordinate i
“offers”:

xi = xi    fi   z  Œ  »x(i)
z(xi, x(i))

2) The contract finally accepted   — the value of z —  is the
intersection of the contract sets offered by all players
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In addition, if x ≠ z, the strategies of the players are no longer
independent:

P(zi, zj)  = Ú dx ’kqk(xk) d(zi(x) - zi) d(zj(x) - zj)

• So player i’s strategy choice affects the strategy choice of
player j

1) Stochastic dependence, but not necessarily Bayes-
optimality (as in correlated equilibria)

2) If z is interpreted as the final joint action in a multi-stage
game, this gives Stackelberg games, signalling, etc.

1) In a team game, all gi are the same function, the
world  utility, G

E.g.,  G(x)  =  Âi hi(z(x))

2) For S(P) concave with infinite derivative at ¡’s border,
L(P)  =  bEP(G(z(x)))  -  S(P) is a convex surface with a
single global minimum:

• One and only one solution
• The solution is easy to find

3) This optimal G is not a product distribution in general,
i.e., it couples the players, regardless of whether x = z
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SAMPLING PROBABILITY DISTRIBUTIONSSAMPLING PROBABILITY DISTRIBUTIONS

•  Say you want to evaluate a high-dimensional integral

Údz f(z) p(z)

   where p(z) is a probability distribution

•  A very common problem, e.g., in Bayesian analysis,
   materials science, physics, chemistry, etc.

•  In Monte Carlo algorithms, one does this by repeatedly
   sampling p(z), and averaging the associated values of f(z)

•  But how do you sample p(z)?
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1) Perform a guided random walk through z
 i)   Metropolis Hastings  (MH) algorithm  — the basis of
      simulated annealing
 ii)  Only exactly correct asymptotically

2) Approximate p(z) with a product distribution q and
sample q directly
 i)    No wait for asymptotia
 ii)   There are two primary approximation error

  measures:  forward KL  and  backward KL
 iii)  They give different Lagrangians, and so different

  algorithms for estimating optimal q
iv)   Associated integration errors may be correctable
        with  importance sampling

Hybrid combinations of (1) and (2):

I) MH uses a distribution R to set the walk’s initial z

II) MH uses a proposal distribution Q after that:

   i)   Q gives the “exploration” point ze found from the
  current point zt

   ii)  zt becomes ze always if p(ze) > p(zt)

   iii) else zt becomes ze with probability p(ze)Q(zt) / p(zt)Q(ze)

Either R and/or Q can be set to
the q found via either inverse KL and/or forward KL



21

Hybrid combinations of (1) and (2):

I) MH’s walk gives a sample D of p;
D can be used to estimate the q that best approximates p

   •  Can be used for either the approximation error
      of inverse KL q or of forward KL q

   •  Can then sample from this q (not the same as
   re-sampling from D)

II) In  adaptive MH  , (I) is done repeatedly;

     • Each time the new q is used to modify Q

     • Crucial that the modification is Markovian

Central Concept
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CORRECTIONS TO COIN ALGORITHMSCORRECTIONS TO COIN ALGORITHMS

1) In optimization and sampling, calculating the optimal
{qi} usually intractable.

The {qi} must be set adaptively

2) In control, often don’t even know what to calculate
(can’t accurately model the system) . . .

Agents  — the {qi} —  must be set adaptively

3) Control should be robust against failures/noise, and if
distributed have few communication requirements  . . .

The {qi} must be set adaptively

• A collective is

    i)   A set of agents {i}, each of which

    ii)  tries to make the move xi that maximizes
         an associated private utility function gi(x),

    iii) together with a world utility G(x) measuring the
   performance of the overall system

• The probability distribution across G values is set by

i)  how “aligned” each gi is with G; does replacing
    (xi, x(i)) Æ (x'i, x(i)) improve gi iff it improve G?

ii) the size of the “signal” of the change in gi under
    (xi, x(i)) Æ (x'i, x(i)) in comparison to the “noise” of the
    change under (xi, x(i)) Æ (xi, x'(i))
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• In COllective INtellience (COIN) experiments, at each
iteration the simplest common machine learning algorithm
was used by each i to choose xi:

i)  For each xi Œ xi, estimate gi(xi, x(i)) by averaging the gi

    values in previous iterations in which xi = xi

ii) To trade off “exploration vs. exploitation”, choose
    among the xi according to a Boltzmann distribution over
    those estimated gi values

Product distribution theory provides an alternative perspective:

Rather than “trying to maximize gi” by “trading off
exploration and exploitation”, the algorithms
“try to find a bounded rational equilibrium”

1) Previous work  based on a set of mathematical premises
expected to hold for any learning algorithm

2) Using those can solve for the gi of a particular form that
are aligned with G and have best signal / noise:

AUi(x)  ≡  G(x)  -  Údx'i f(x'i) G(x'i, x(i))

for a distribution f(.)

3) Usually arbitrarily chose f(.) to be uniform

Product distribution theory says what f(.) should be

- uniform is not correct
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1) Computer experiments compared gi = AUi and the team
game gi = G

It was found that when they shared the same
temperature, for some temperature ranges the team
game outperformed AU

2) No understanding of how to avoid this without modifying
AU’s temperature

P.D. theory shows that this phenomenon is due to a

biased estimator of the Boltzmann exponentials

1) A problem with AUi is that it requires evaluating G for
counter-factual xi values

2) A partial solution is to approximate f(xi) = d(xi, CLi) for
some “clamping parameter” CLi.

3) This defines the private utility WLUi

4) Didn’t know how to choose CLi in practice (intuition
usually used)

P.D. theory says what CLi should be to

best approximate the correct AU
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1) In computer experiments, there was an initial data-
gathering period in which all coordinates were set
randomly

2) After that, learning algorithms were turned on a few at a
time, to avoid too much disruption to the system

3) Didn’t know how fast to turn on the algorithms, which to
turn on when, etc.

P.D. theory shows this to be

“mixed serial-parallel Brouwer updating”,

which can be optimized

• In Intelligent Coordinates (IC), the random exploration

step of simulated annealing is replaced by “intelligent

exploration”:

Each variable’s exploration value is set by the move of an

associated learning algorithm of an underlying collective

P.D. theory shows that this is “adaptive Metropolis-Hastings

with Brouwer updating”  — and with the mistake that the

keep/reject step does not reflect the proposal distribution
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MATHEMATICAL FOUNDATIONSMATHEMATICAL FOUNDATIONS

1) We want to formalize how “surprised” you are if you
    observe a value s generated from a distribution P(s)

2) We want the surprise at seeing the IID pair (s, s') to equal
    the sum of the surprises for s and for s’

3) This means surprise(s)  =  -ln[P(s)]

4) So expected surprise is the Shannon entropy

S(p) ≡  -Âs P(s)ln[P(s)]

  • Shannon entropy is concave over P

  • Information in P is what’s left over after surprise: -S(P)

Maxent: Given only constraints {E(gi) = 0}, choose minimal
information P consistent with those constraints
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1) We want to formalize “how far apart” P1 and P2 are

2) Generate m unordered data D by IID sampling P1,
then misassigning to each di Œ D the probability P2(di)

3) So you assign to all of D the likelihood ’i£mP2(di) C(D)
where C(D) is the multinomial counting factor

4) Take log of this and divide by m, to get “likelihood rate”.
As m Æ • , with S(P || P')  ≡  -Âs P(s)ln[P' (s)], the rate
 is the Kullback-Leibler distance

KL(P1 || P2)  ≡  S(P1 || P2) - S(P1 || P1)

•  KL(P1 || P2) is never negative, and equals 0 iff P1 = P2

•  We want to minimize a smooth function f(s Œ ¬n) subject to K
    constraints {gi(s) = 0}

•  Define L(f, {gi})(s)  ≡  f(s) + Âiligi(s)

•  L is the Lagrangian, and the {li} the Lagrange parameters

•  Set the partial derivatives of L with respect to both s and the
   Lagrange parameters to 0. Voila.

 Example: Each gi(s) forces a different subset of s’s components
                  to sum to 1, i.e., to be a probability distribution.
       •    Convex f enforces non-negativity.
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Brouwer’s fixed point theorem :

•  Let f(s) be a smooth map from V, into V, 
         where V is a bounded convex connected subset of ¬n

• Then there exists s such that s = f(s)

1)    Both ¡ and ¡+  are bonded convex connected subsets of ¬n

       So any smooth map over them has a fixed point

2)    In particular, if the Lagrange minimization problem gives
       q = f(q) for a smooth f(.), then the problem has a solution

 •  q Æ f(q) is a Brouwer update of  q

Problem: How to express arbitrary P(z) with a prod. dist.?

Solution:

     x = z won’t work  . . . so introduce more semi-coordinates

Example:

1) i)    z = (z1, z2)

ii)  |zi| possible values of each zi

2) i) Have z1 = x1  — the value of x1 tells you z1

ii)  Have an extra xi for each possible value of z1;
      xz1

 says what value z2 has when z1 = z1
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Formally,

z1  =  z1(x1, xz'1
, xz"1

,  . . ., x|z1|+1)   =  x1

z2  =  z2(x1, xz'1
, xz"1

,  . . ., x|z1|+1)   =  xz1
 =  xx1

So
P(z1)   =   P(x1)   =   q1(x1)

P(z2 | z1)   =   P(xz1
 = z2 | x1 = z1)  =  qz1

 (xz1
 )

Representation theorem: For any P(z), there exists a
coordinate system z(.) and product distribution q such
that q induces P
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(GRAND) CANONICAL ENSEMBLE(GRAND) CANONICAL ENSEMBLE

† 

qi
gi (xi) µ e

-b[gi ]
i,qgi

(xi)

1)  Consider the Lagrangian Li(q)  =  bEqi
(gi | q(i)) - S(q)

    where S is Shannon entropy

2) This Li minimizes KL(q || pbgi), where pbgi is the exact
    Canonical ensemble

3) Its optimizing qi is

    where as before [gi]i,q(xi) is expected gi conditioned on xi,
    when other coordinates are distributed according to q(i)

   Each “particle” i coupled to its own distinct
 “heat bath”, i.e., a mean field approximation

1)  Now have each  gi(x)  =  G(x) + Âi hi(x)  , where the {hi} are all
integer-valued functions

2) Then the L-minimizing P is the Grand canonical ensemble,
and the minimizing q is a mean field approximation to it

•     xi encodes the state of all particles of type i

•     hi(x) is the chemical potential of particles of type i
multiplied by their number — which is allowed to vary

• If we minimize KL(pbgi || q) instead, we get the marginal,

qi(xi) = pbgi(xi)

 •  Unlike qi
gi, this inverse KL q is independent of q(i)

 •  Can calculate it through importance sampling
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MAXENT GAME THEORYMAXENT GAME THEORY

Consider bounded rational game theory with Lagrangians
Li(q)  =  bEqi

(gi | q(i)) - S(q) where S is Shannon entropy.

1) This Lagrangian arises if each player (chooses its mixed
strategy to) maximize its entropy, subject to a provided
expected payoff and the other players’ mixed strategies.

2) Alternatively, it arises if each player maximizes its
expected payoff, subject to a provided entropy.

All mathematical machinery of statistical physics can
    be applied to bounded rational game theory
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1) Want a measure of “how rational” qi is
 •  Can’t use Eqi

(gi)  — it depends on q(i)

2) A rationality function R(U, qi) measures how peaked qi

is about argminxi
U(xi) for any function U

i) Rationality is the inverse temperature if qi is a
   Boltzmann distribution in U:

R(U, qi)  =  b  if  qi µ exp{-bU}

ii) Maximizing entropy subject to a rationality value
     gives a Boltzmann distribution at that temperature:

      Of all qi such that R(U, qi) = b*, the one with
maximal entropy is qi µ exp{-b* U}

3) We are interested in U(xi) that measure expected payoff

 to i if it makes move xi. So for any function V(x), define

[V]i,q(xi)   =  Eq(i)
(V(xi))  ≡   Údx(i)V(xi, x(i)) q(i)(x(i))

4) R([gi]i,q, qi)  is our measure of “how rational” qi is.

5)   Intuitively, it is the inverse temperature of the

distribution over i’s expected payoffs when it chooses

      moves according to qi.
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• The optimal q, given rationalities {b*
i}, is the minimizer

over q and the {li} of

L(q, l)   ≡   Âi li[R([gi]i,q, qi) - b*
i]   -   S(q)

• At any local minimum of L(q, l), for all i,

qi  µ  exp{-b*
i[gi]i,q}

Proof: i)  The Lagrange parameter term forces any local
      minimum to obey R([gi]i,q, qi) = b*

i for all i.

      ii) The qi maximizing entropy while obeying
      R([gi]i,q, qi) = b*

i is the Boltzmann distribution. QED

 The maxent q is the minimal information q that is
         consistent with specified player rationalities

 • Finding the Nash equilibria of a non-team game is
typically viewed as a multi-criteria optimization problem

 • Finding the bounded rational equilibria is a single-criteria
optimization problem:

 Minimize L(q, l)

• All solutions to this problem are off ¡’s border, and
therefore easy to find



34

Example: Rationality is the inverse temperature of that
     Boltzmann distribution that best fits qi:

 R(U, qi)   =   argminb [ KL(qi || exp{-bU} / N(bU)}) ]

  Must establish both requirements of a rationality function
  are met:

1)  KL distance is non-negative, equalling zero only if its
arguments are equal.

If qi  = exp{-b* U} / N(b* U)}, taking b = b* gives a KL
      distance of 0.

So the rationality of this qi is 0, as required.

2) i)  Writing it out,

  R(U, qi)   =   argminb [ bEqi
[U(xi)]  +  ln(N(bU) ]

ii)  So Eqi
[U(xi)]  =  -∂b ln(N(bU))|b= R(U, qi)

iii) So all qi with rationality b* have the same Eqi
[U(xi)]

iv) Therefore of all qi with rationality b*, the one with
the maximal entropy is the Boltzmann distribution

      with that inverse temperature. QED

In practice, replacing the rationality constraint term in
L(q, l) with an expected utility constraint may be easier
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The grand canonical  ensemble can model bounded rational
games in which the number of actors varies.

Intuition: Actors have “types”, just like particles have properties

Example 1 (microeconomics):
i)   A set of bounded rational companies,
ii)  with payoff functions given by market valuations,
iii) each of which must decide how many employees
      of various types to have.

Example 2 (evolutionary game theory):
i)   A set of species,
ii)  with payoff functions given by fractions of total

resources they consume,
iii) each of which must “decide” how many phenotypes
      of various types to express.

ADAPTIVELY SOLVING FOR PROD. DIST.ADAPTIVELY SOLVING FOR PROD. DIST.’’SS

Brouwer Brouwer updatingupdating                                    Gradient descent                            Importance sampling

              Adaptive Metropolis-Hastings                                      Sim. annealing / Prod. Distributions

POTPOURRI

 Coordinate transforms                                      Continuous spaces                                Constrained optimization

  Black box optimization                                 Time-extended systems                                 Block look-ahead

     Entropy bounds                           (un)supervised mach. learning                            Observing agents



36

1) To “set qi  adaptively” means iteratively trying to
minimize L(qi, q(i)), given partial information about q(i).

2) As an example, consider again the Lagrangian

Li(q)   =   bEq(gi (z(x)))  -  S(q)

3) Say  S(q) = Âi Si(qi)

So S is linear in the coordinates . . .

BROUWER UPDATINGBROUWER UPDATING

3) E.g., recall that since q is a product distribution, such
linearity holds when S is the entropy,

S(q)  =  - Údx q(x) ln[q(x)]   =   -Âi  Údxi q(xi) ln[q(xi)]

4) For any such linear S, L is linear:

L(q)  = Âi ( Údxi qi(xi) [gi]i,q(xi)  - Si(qi) )

where as before, [gi]i,q(xi) is expected gi conditioned on xi,
when other coordinates are distributed according to q(i)
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5)   i)  If we sample gi (x) repeatedly for a particular 
 xi, we get an estimate of [gi]i,q(xi)

      ii) Say the adaptive algorithm setting qi can always 
 evaluate the current Si(qi)

In this situation,

Each qi can adaptively estimate its contribution to L(q)

6) Recall that at the q minimizing the entropic L(q),

Each qi can adaptively estimate its best-case form† 

qi
gi (xi) µ e

-b[gi ]
i,qgi

(xi)

Parallel Brouwer updating :

All coordinates i simultaneously replace

where          is the estimated [gi]i,q, and Ni,q(.) is

the associated normalization constant (partition function).

• Akin to game theory’s “ficticious play” strategy

• Slow convergence  — jumps all over ¡.
Can even worsen the approximation in any given update

† 

qi(xi) Æ e
-b[ ˆ g i]i,q(xi)

Ni,q(b[ ˆ g i]i,q)

† 

[ ˆ g i]i,q(.)
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Serial Brouwer updating  :

One coordinate i at a time Brouwer updates

• Guaranteed to decrease Li if estimate of [gi]i,q is accurate

Greedy serial Brouwer updating :

1)  The Lagrangian gap of coordinate i is how much Li
     drops if only i updates:

ln[Ni,q([gi]i,q)]   +   Eqi
([gi]i,q)   +   Si(qi)

2) The coordinate with the largest gap updates

Mixed serial/greedy Brouwer updating :

Optimal COIN “turning on algorithms”, i.e., optimal
Stackelberg game, i.e., optimal organization chart

ADAPTIVELY SOLVING FOR PROD. DIST.ADAPTIVELY SOLVING FOR PROD. DIST.’’SS

Brouwer updating                                    Gradient descentGradient descent                            Importance sampling

              Adaptive Metropolis-Hastings                                      Sim. annealing / Prod. Distributions

POTPOURRI

 Coordinate transforms                                      Continuous spaces                                Constrained optimization

  Black box optimization                                 Time-extended systems                                 Block look-ahead

     Entropy bounds                           (un)supervised mach. learning                            Observing agents
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1) Say Si(qi) = Âxi 
Si,xi 

(qi(xi))  (again, like with entropy).

2) Then the qi(xi) component of —L(q), projected onto the
space of allowed qi(xi), is

b[G]i,q(xi)  + Si,xi
(qi(xi)) / qi(xi)

—

Údx¢i (b[G]i,q(x¢i)  + Si,xi
(qi(x¢i)) / qi(x¢i))

•  The subtracted term ensures normalization

GRADIENT DESCENTGRADIENT DESCENT

3) The Si,xi
(qi(xi)) / qi(xi) values are known by inspection

4) The b[G]i,q(xi) terms are estimated as in Brouwer updating

Each qi can adaptively estimate how it should

change under gradient descent over L(q)

5) Similarly the Hessian can readily be estimated (for
Newton’s method), etc.
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1) Consider a team game. Let ni be the samples of G used by
   coordinate i to decide how to change under gradient descent

2) The expected quadratic error in that descent step is

Údq(i) P(q(i)) [ Ú dni P(ni | q(i), gi) {—LG(q) - —Lni
(qi)}2 ]

    where the gradients are the true gradient of L for utility G
    and the estimated gradient for utility gi

3) This is just a conventional bias2 plus variance!

4) Of the gi guaranteed to be unbiased, the one with the smallest
    variance is

G(x)   -   Údx'i G(x'i, x(i)) A(x'i)

  where A(.) a distribution, A(x'i) being proportional  to the
  reciprocal of the number of times x'i occured in ni

CENTRAL CONCEPTCENTRAL CONCEPT

APPLICATION DOMAINSAPPLICATION DOMAINS
 Optimization                     Distributed Control                  Game theory

 Sampling of probability distributions              Corrections to COIN algorithms

MAXENT LAGRANGIANSMAXENT LAGRANGIANS

Mathematical underpinningsMathematical underpinnings

 (Grand) Canonical ensemble,  etc.                            Team games / Mean-field theory

Maxent game theory
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ADAPTIVELY SOLVING FOR PROD. DIST.ADAPTIVELY SOLVING FOR PROD. DIST.’’SS

      Brouwer updating                          Gradient descent            Importance sampling

       Adaptive Metropolis-Hastings                   Sim. annealing / Prod. Distributions

POTPOURRIPOTPOURRI
 Coordinate transforms                Continuous spaces          Constrained optimization

  Black box optimization             Time-extended systems             Block look-ahead

     Entropy bounds  (un)supervised mach. learning       Observing agents

TAKE-HOME MESSAGE:TAKE-HOME MESSAGE:

Whenever you encounter a distribution
P(z) that is difficult to deal with, try

expanding it as a product distribution

∏i qi(xi)

with associated Lagrangians.


